Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity
نویسندگان
چکیده
Protein kinases have evolved diverse specificities to enable cellular information processing. To gain insight into the mechanisms underlying kinase diversification, we studied the CMGC protein kinases using ancestral reconstruction. Within this group, the cyclin dependent kinases (CDKs) and mitogen activated protein kinases (MAPKs) require proline at the +1 position of their substrates, while Ime2 prefers arginine. The resurrected common ancestor of CDKs, MAPKs, and Ime2 could phosphorylate substrates with +1 proline or arginine, with preference for proline. This specificity changed to a strong preference for +1 arginine in the lineage leading to Ime2 via an intermediate with equal specificity for proline and arginine. Mutant analysis revealed that a variable residue within the kinase catalytic cleft, DFGx, modulates +1 specificity. Expansion of Ime2 kinase specificity by mutation of this residue did not cause dominant deleterious effects in vivo. Tolerance of cells to new specificities likely enabled the evolutionary divergence of kinases.
منابع مشابه
Toward More Accurate Ancestral Protein Genotype–Phenotype Reconstructions with the Use of Species Tree-Aware Gene Trees
The resurrection of ancestral proteins provides direct insight into how natural selection has shaped proteins found in nature. By tracing substitutions along a gene phylogeny, ancestral proteins can be reconstructed in silico and subsequently synthesized in vitro. This elegant strategy reveals the complex mechanisms responsible for the evolution of protein functions and structures. However, to ...
متن کاملThe Resurrection Initiative: Storing Ancestral Genotypes to Capture Evolution in Action
In rare circumstances, scientists have been able to revive dormant propagules from ancestral populations and rear them with their descendants to make inferences about evolutionary responses to environmental change. Although this is a powerful approach to directly assess microevolution, it has previously depended entirely upon fortuitous conditions to preserve ancestral material. We propose a co...
متن کاملA resurrection study reveals rapid adaptive evolution within populations of an invasive plant
The future spread and impact of an introduced species will depend on how it adapts to the abiotic and biotic conditions encountered in its new range, so the potential for rapid evolution subsequent to species introduction is a critical, evolutionary dimension of invasion biology. Using a resurrection approach, we provide a direct test for change over time within populations in a species' introd...
متن کاملAncestral resurrection of the Drosophila S2E enhancer reveals accessible evolutionary paths through compensatory change.
Upstream regulatory sequences that control gene expression evolve rapidly, yet the expression patterns and functions of most genes are typically conserved. To address this paradox, we have reconstructed computationally and resurrected in vivo the cis-regulatory regions of the ancestral Drosophila eve stripe 2 element and evaluated its evolution using a mathematical model of promoter function. O...
متن کاملA ricle Ancestral Resurrection of the Drosophila S2E Enhancer Reveals Accessible Evolutionary Paths through Compensatory Change
Upstream regulatory sequences that control gene expression evolve rapidly, yet the expression patterns and functions of most genes are typically conserved. To address this paradox, we have reconstructed computationally and resurrected in vivo the cis-regulatory regions of the ancestral Drosophila eve stripe 2 element and evaluated its evolution using a mathematical model of promoter function. O...
متن کامل